Table **V.** Raman Frequencies of Molten AlCl₃-TeCl₄ Mixtures (cm^{-1)a}

$AIC1$.: $TeCl4 = 0:1$ 250° , A	$AICl_{3}$: $TeCl4 = 1:1$ 200° , B	$AICl_{\alpha}$: $TeCl4 = 2:1$ 150° , C	Assignment
381 vs, p	392 vs. p	395 vs. p	$\nu_1(A_1)$ TeCl ₃ ⁺ (A_1) TeCl ₄
351 m, dp	371 m, dp	378 m. dp	ν ₃ (E) TeCl ₃ ⁺ (E) TeCl ₄
	$344 \; \text{m}$, p	$345 \; \text{m}, \; \text{p}$	ν_1 (A ₁) AlCl ₄ ⁻
281 vw. dp?		$311 \text{ m}, \text{p}$	(A_1) Al ₂ Cl ₂ (B_1) TeCl,
151 m, dp	$169 \text{ m}, \text{p}$?	169 m, p?	$v_2(A_1)$ TeCl ₃ ⁺ (E) TeCl ₄
	147 m. dp	147 m, dp	ν_a (E) TeCl ₃ ⁺

a Key: m, medium; s, strong; v, very; w, weak; dp, depolarized; p, polarized.

amount of $A|Cl_4$ ⁻ present, the mass balance demands that the rest of Al(III) is present as Al_2Cl_6 . A calculation similar to that used by Oye, *et al.*,¹⁸ of the mole fraction equilibrium constant $K = x_{A1,Cl_1}x_{A1Cl_2}^{2}/x_{A1,Cl_2}^{2}$ was performed. It was assumed that the Raman intensity is proportional to the concentration. The intensities of the strongest bands for $AICl_4^-$ and $TeCl_3^+$ used were obtained from the mean of three spectra of 1:1 composition and the 2:1 composition of AlCl₃-TeCl₄. A value for *K* of about 2×10^{-2} was obtained. This value fits reasonably well with the values from the MCl-AlCl₃ systems, where K can be calculated to be

 0.8×10^{-2} , 2.6×10^{-2} , and 4.96×10^{-2} for KCl,¹⁸ NaCl,²⁹ and NaCl³⁰ at 170-240, 190, and 175°, respectively. It is here worthwhile mentioning that in contrast to the MC1-A1- $Cl₃$ systems no miscibility gap is found in the TeCl₄-AlCl₃ system. An explanation for this is probably that the M^+ ions $(M = Li, Na, K, Cs)$ are not able to form uncharged species with the anions of the melt to the same degree as the polar TeC1,' and that the uncharged species are completely miscible with Al_2Cl_6 . That there is strong interaction between the ions in the system can be seen from the frequency change of the symmetrical stretching vibration of the TeC1,' complex. As the anions become less and less able to polarize *(i.e., as one goes from Cl*⁻ to AlCl₄⁻ to Al₂Cl₇⁻ and AlCl₄⁻), the frequencies 381, 392, and 395 cm⁻¹, respectively, are obtained for the position of the band due to the symmetrical stretching vibration.

Acknowledgment, The authors wish to thank Dr. Daniel Christensen, University of Copenhagen, for helpful discussions.

Registry No. KAlCl,, **13821-13-1;** TeCl,, **10026-07-0;** AlCl,, **7446-70-0;** TeCl,+, **43644-19-5;** TeC1,-, **44246-02-8;** TeCl, *-, **20057- 66-3;** KC1, **744740-7.**

(29) H. A. **Oye** and D. M. Gruen,Inorg. *Chem.,* **3, 836 (1964). (30)** L. **G.** Boxall, H. **L.** Jones, and R. **A.** Osteryoung, *J. Electvo. chem. Soc.,* **120, 223 (1973).**

Contribution from the Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois **60201**

Vibrational Spectra and Bonding in Acetonitrile Complexes of Group Va Pentahalides

D. M. BYLER and D. F. SHRIVER*'

Received April 22, I9 74 **AIC402595**

Complete solid-state Raman and infrared spectra have been obtained for the acetonitrile adducts of arsenic pentafluoride and antimony pentachloride. In addition, Raman depolarization data are presented for the acetonitrile and SO_2 solutions of these systems. The results are in accord with the X-ray structure of SbCl,*NCCH, which **is** a molecular solid with octahedral coordination $({\sim}C_{\rm at}$, symmetry) about the central metal atom. In general, the metal-halogen vibrations correlate well in relative frequency and intensity with those of similar complexes having approximately $C_{4\nu}$ symmetry. The measured Raman shifts for the MN stretch (including the revised assignment of the previously reported data for the SbF_5 complex) are \sim 277 cm⁻¹ for SbF_s.NCCH₃, 270 cm⁻¹ for AsF_s.NCCH₃, and 222 cm⁻¹ for SbCl_s.NCCH₃. The respective force constants for each of these complexes are **1.9,1.9,** and 1.1 mdyn/A. The relationship between the constants of the fluoride and the chloride complexes for antimony *(i.e.,* SbF_s.NCCH₃ > SbCl_s.NCCH₃) is just opposite to that calculated for the acetonitrile complexes of the boron halides. An attempt to stabilize the "nonexistent" molecule ASCI, as the acetonitrile complex proved unsuccessful.

Introduction

Strong Lewis acids, particularly the binary metal halides, and their adducts find use in a host of well-known reactions. For example, they have long served as catalysts² and intermediates³ in Friedel-Crafts and related reactions. In the past, reports involving the use of group IIIa halides dominated the literature; since the earyl **1960's,** however, interest in the pentahalides of the group Va elements has increased. One major instance is the use of antimony pentafluoride in the formation and stabilization of simple carbonium ions.⁴ A variety of simple molecular and ionic $MX₅·L$ complexes

(1) To whom correspondence should be addressed.

- **(2) G.** A. Olah in "Friedel-Crafts and Related Reactions," **Vol. I,**
- G. A. Olah, Ed., Interscience, New York, N. Y., 1963, Chapter IV.

(3) G. A. Olah and M. W. Meyer, ref 2, Chapter VIII.
- **(4)** For example: **G.** A. Olah and *G.* Liany, *J. Amer. Chem. Soc.,* **95, 3792 (1973),** and preceding papers in this series.

 $(\sim C_{4v}$ symmetry) exist, including such species as AsF₅. $NCCH₃$, $AsF₅·N(CH₃)₃$, $AsF₅·SO₂$, $AsF₅·PF₃$, $AsF₅Cl₅$ $\text{AsF}_5\text{Br}^{-7}$ As F_5OH^{-5} Sb F_5 ·NCCH₃,⁵ SbF₅·dioxane,⁵ SbF₅· $(C_6H_5)_3$, 6 SbF₅OH⁻,^{5,8} SbCl₅.OP(CH₃)₃,⁹ SbCl₅.OPCl₃,⁹ Sb- $Cl_5 \nCH_3NO_2$,¹⁰ SbCl_S DMF ,¹¹ SbCl_S $DMSO$,^{9,11} and SbCl_s. py,⁵ SbF₅.SO₂,⁵ SbF₅.PF₃,⁶ SbF₅.P(C_6H_5)₃,⁶ SbF₅.As-

discusses some of the specific compounds listed in **the** text as well as many others: L. Kolditz, *Halogen Chem., 2,* **115 (1 967),** and references therein. **(5)** The following review of the halides **of** arsenic and antimony

(6) R. D. W. Kemmitt, **V.** M. McRae, R. D. Peacock, and **I.** L.

Wilson, *J. Inorg. Nucl. Chem.*, 31, 3674 (1966).
(7) L. Kolditz and H. -P. Krause, *Z. Chem.*, 7, 157 (1967).
(8) W. A. Mazeika and H. M. Neumann, *Inorg. Chem.*, 5, 309 **(1966).**

(9) I. Lindqvist, "Inorganic Adduct Molecules **of** Oxo-Compounds,'' Academic Press, New York, N. Y., **1963,** and references therein.

(1 0) L. Riesel and H. -A. Lehman, *2. Chem.,* **7,** *3* **16 (1 967).**

 $NCH₃$, 12,13 Most of the recent reports do contain vibrational spectra, but these are limited to narrow energy ranges and a single isotopic species. Indeed, except for the previous paper in this series,¹⁴ no comprehensive spectroscopic assignments for the $MX₅$ moiety of any group Va pentahalide complex are available.

The data presented here on $\text{As}F_5\text{-}N\text{CCH}_3$ and $\text{SbCl}_5\text{-}$ NCCH, in conjunction with those already reported for SbF_5 NCCH₃¹⁴ are employed to explore the influence of the central atom and attached halogens on the donor-acceptor bond. The consequence of changing halogens is not at all obvious. For example, among the boron halides, simplistic electronegativity arguments to the contrary, the relative order of acidity determined from heats of fromation is $BBr_3 \ge BCl_3 \ge BF_3$,¹⁵ which is in the same sequence as the relative donor-acceptor bond strengths given by the force constants.16 Qualitative chemical evidence seems to indicate just the opposite influence of halogen on the acidity of group Va pentahalides.

Experimental Section

Except where noted below all procedures were similar to those reported in the previous paper.¹⁴

Infrared Spectra. Far-infrared spectra (450-60 cm-') were collected on a Perkin-Elmer 180 with the factory-installed far-infrared option. For the mid-infrared region $(4000-400 \text{ cm}^{-1})$, this same instrument was employed for $\text{AsF}_5 \cdot \text{NCCH}_3$ samples, whereas a Beckman IR-9 was used for $SbCl₅ \cdot NCCH₃$ samples. Each of these instruments was occasionally checked with atmospheric water and CO, bands or with liquid indene and peak positions were corrected to within ± 2.0 cm⁻¹.

As with SbF_s ·NCCH₃,¹⁴ samples of the adducts were prepared for infrared spectroscopy by layering the reactants on an AgCl sample plate at -196° . However, owing to its high volatility, AsF_s was deposited in more and thinner layers with acetonitrile and annealing was performed at a lower temperature than before, -60° . There was no indication of uncomplexed Lewis acid or base in any of the spectra.

Raman Spectra. All Raman data for the adducts were gathered on a Spex 1401 0.85-m double monochromator and sampling optics of our own design. Extensively modified Spex photon counting equipment was used in conjunction with an RCA C31034 photomultiplier. The green 514.5-nm or blue 488.0-nm line of an argon ion laser or the red 649.1-nm line of a krypton ion laser (both lightfeedback stabilized Spectra Physics 164 Models) was used to illuminate the sample. For $SbCl_s \cdot NCCH_3$, using the 647.1-nm exciting line, laser power at the sample typically ranged from 100 to 300 mW and the spectral resolution was $0.5-2.5$ cm⁻¹. In the case of the $\text{AsF}_s\text{-NCCH}_3$ systems, using 514.5- or 488.0-nm radiation, laser power at the sample was 300-400 mW and the band pass was 0.8-1.5 cm-'. The observed wave number shifts should be good to about **k1.0** cm".

Data for each sample were collected on a strip chart recorder, as well as digitally on magnetic tape (typically at 0.83 -cm⁻¹ intervals). Digital data were processed on **a** CDC 6400 computer by program RAMAN.¹⁷ In every case, the conventional 90 $^{\circ}$ viewing geometry was employed, with the incident beam taken to be the *z* axis, the collection optics then being along the x axis.

In addition to the usual room-temperature spectra, studies of the $SbCl_s \cdot NCCH_s$ and $AsF_s \cdot NCCH_s$ compounds at lower temperatures (down to about -110°) were obtained in a Miller-Harney type cell.¹⁸

(1 1) M. Burgard, G. Kaufman, and R. Rohmer, *C. R. Acud. Sci., Ser. C,* 267, 689 (1968).

(12) H. Binas, Z. Anorg. *Allg. Chem.,* 352, 271 (1967).

(13) M. Burgard and I. MacCordick, *Inovg. Nucl. Chern. Lett.,* 6, 599 (1970).

(14) D. M. Byler and D. F. Shriver, *Inorg. Chern.,* 12, 1412 $(1973).$

(15) H. C. Brown and R. R. Holmes, *J. Amev. Chern. Soc.,* **78,** 2173 (1956).

(16) D. F. Shriver and B. Swanson, *Inorg. Chem.,* **10,** 1354 (1971).

(17) D. F. Shriver, R. Lloyd, and W. Davis, XXI Mid-America Symposium on Spectroscopy, Final Program, Chicago, Ill., 1970, **p** 46.

(18) F. A. Miller and B. M. Harney, *Appl. Spectrosc.,* 24, 291 $(1970).$

Reagents. SbCl, (Baker and Adamson reagent grade, Specialty Chemicals Division, Allied Chemical Corp.) was repeatedly distilled at room temperature under high vacuum until the Raman spectra showed no trace of free Cl_2 . AsF₅ (Pflautz and Baum) was purified by fractional distillation under high vacuum. Details of the purification of CH_3CN , CD_3CN , and $CH_3C^{15}N$ are given in the previous paper. **l4**

Attempted Preparation of AsCl₅. About 1 ml $(\sim 2 \text{ g})$ of AsCl₃ was distilled into a 0.25-in. o.d. Pyrex tube at -196° , followed by an excess of chlorine. After sealing off under vacuum, the mixture was warmed to room temperature. A Raman spectrum of the bright yellow liquid showed only bands assignable to the two parent molecules.

Attempted Preparation of AsCl, NCCH₃. Approximately equimolar quantities $(<10$ mmol, estimated from the volume of the liquids) were distilled into a 0.25-in. Pyrex tube containing an excess of acetonitrile. The tube was sealed under vacuum (with the reactants cooled to -196°); then the mixture was allowed to warm slowly to room temperature. The initial mixture was a yellow, freeflowing liquid. After several days the color began to fade and the solution became more viscous. **A** fcw days later some light-colored crystals appeared. Although a reaction had occurred, the Raman spectrum gave no indication of features which might be attributed to an $AsCl₅$. L species or to complexed acetonitrile.

Results

Selection Rules. As expected, the spectra fully confirmed the assumption that $\text{AsF}_5 \text{NCCH}_3$ is structurally similar to $SbCl₅ \cdot NCCH₃$, which has approximately C_{4v} symmetry (octahedral coordination) about the antimony atom.¹² Considered as a rigid structure, the highest symmetry possible for the isolated MX_s .NCCH₃ [M = As, Sb; X = F, Cl] molecule is C_s , for which the selection rules predict 30 fundamentals. More reasonable, particularly for solutions of the complexes, is a nonrigid structure in which the methyl group rotates freely with respect to the four equatorial halogen atorns. As shown in the previous paper, $14,19,20$ selection rules derived from the corresponding permutation group yield 21 fundamentals: 8 A_1 , 1 A_2 , 2 B_1 , 1 B_2 , and 9 E^{21} Of these, the A_1 and E modes are both Raman and infrared active, the B_1 and B_2 species are Raman active, and the A_2 mode is silent.

Even if the molecule were strictly rigid on the infrared time scale, a local symmetry approximation to the selection rules would be physically reasonable. This is true because of the rather wide separation of the frequencies attributed to the $MX₅$ - and -NCCH₃ moieties and the spatial remoteness of the MX_s - portion from the -NCCH₃ part of the complex. This local symmetry model results in the same overall symmetry designations and activities as those outlined for the nonrigid model. In particular, the acetonitrile portion ($\sim C_{3v}$) should exhibit 4 A₁ and 4 E fundamentals, while 4 \mathbf{A}_1 , 2 \mathbf{B}_1 , 1 \mathbf{B}_2 , and 4 E modes²¹ are expected for the MX_5N - portion $(\sim C_{4v})$. In addition, there is an MNC deformation belonging to the species E and an A_2 torsional mode. The designation and approximate description of these 21 fundamentals are given in Table I.

Assignments. Tables II and III give the assignments for the infrared and Raman bands of solid AsF_5 ¹⁴NCCH₃ and $SbCl₅$.¹⁴NCCH₃. The complete set of spectroscopic data for the solid D- and ¹⁵N- substituted species and Raman data for the sulfur dioxide solutions of the normal isotopic molecules, as well as the assignments for the analogous isotopic variants of SbF_5 ·NCCH₃, may be found in Tables II-VI1 of ref 20.

⁽¹ 9) See also Appendix I of ref 20.

⁽²⁰⁾ D. M. Byler, Ph.D. Dissertation, Northwestern University, 1974.

⁽²¹⁾ For the sake of consistency with the crystal structure of SbCl,.NCCH,, the **xz** and *yz* mirror planes were chosen to be the dihedral planes (σ_d) bisecting the two vertical planes (σ_v) containing the equatorial halogens. Note that α_{xy} now transforms as B_1 while $\alpha_x^2 \rightarrow y^2$ transforms as B_2 .

Table I. Numbering and Approximate Description of the Fundamental Vibrations of MX_s ·NCCH₃ (M=As or Sb; X = F or Cl)^a

ployed in ref **14. Q** This numbering scheme differs slightly from that originally em-

Table II. Observed Infrared and Raman Frequencies (cm⁻¹) for Solid AsF_5 .¹⁴NCCH₃

Infrared (196°)	Raman $(\sim 22^{\circ})$	Assignment
	\sim 105 (~25) a	v_{21}
	239 (10)	v_{19}
281 w	270(6)	$v_{\rm s}$
324 w	325(17)	v_{20}
362s	365(6)	v_{τ}
377 s	384 (12)	v_{18}
\sim 390 sh, w		(?)
435 m	436 (13)	v_{17}
	603(10)	v_{10}
671 ms	673 (100)	$v_{\rm 6}$
718 vs	715 (46)	$v_{\rm s}$
734 vs	~10(2)	v_{16}
962 mw	959 (-2)	v_{4}
1030 mw	$1030 (\sim 2)$	v_{15}
1364 mw	1364 (33)	v_{3}
1410 mw, br	1414 $($ \sim 3)	v_{14}
$2315b$ ms	$2311b$ (14)	$v_1 + v_4$
$2350b_s$	2342 ^b (33)	v_{2}
2950 mw	2948 (41)	v_{1}
3023 mw	3021(3)	v_{13}

^QRelative Raman intensities **(0-100)** are given in parentheses. **b** The values given for $v_3 + v_4$ and v_2 are uncorrected for Fermi reso-nance coupling; the corrected values are 2325, 2340 cm⁻¹ for the infrared spectrum and **2320, 2332** cm-' for the Raman data, respectively.

In no case do any of the fundamental frequencies show a marked temperature dependence. Therefore, the quoted infrared frequencies obtained at *ca.* -196° can be compared directly with the Raman shifts for runs at ambient temperature. In the following discussion, data for the normal isotopic molecules are given without comment or by listing the Lewis acid, while those for the isotopically substituted species are designated by listing the Lewis acid and the enriched element, $e.g., AsF₅-¹⁵N = AsF₅.¹⁵NCCH₃. Unless$ stated otherwise, the frequencies cited in the text are an average of the infrared and Raman data. Assignments for the eight acetonitrile fundamentals are not discussed as they follow those given previously for $SbF_5 \cdot NCH_3$.¹⁴
AsF₅: NCCH₃: 750–500 cm⁻¹. Excluding the A₂ torsion,

only five stretches and seven deformations involve the central metal atom. Displacements along the metal-halogen bonds heavily contribute to four of the stretching vibrationsthe unique MX' axial stretch $[\nu_5(A_1)]$ and the three MX₄ equatorial stretches $[\nu_6(A_1), \nu_{10}(B_1),$ and $\nu_{16}(E)].$

pentafluoride adduct closely parallel those previously Assignments for the AsF stretching region of the arsenic

^QRelative Raman intensities **(0-100)** are given in parentheses. *b* These bands are resolved as distinguishable features only at temperatures below -10°. **c** The values given for v_{10} and $v_{18} + v_{20}$ are uncorrected for Fermi resonance coupling; the corrected values are 297 and 299 cm⁻¹, respectively. d The values given for $v_3 + v_4$ and $v₂$ are uncorrected for Fermi resonance coupling; the corrected values are **2303, 2309** cm-' for the infrared spectrum and **2299, 2305** cm-' for the Raman spectrum, respectively.

reported for SbF_5 ·NCCH₃.¹⁴ As often observed for molecules with lighter central atoms, the four bands come at higher frequencies for the arsenic complexes than for those of antimony. For the former the A_1 vibrations are at \sim 716 and \sim 672 cm $^{-1}$, while for the latter they are found at \sim 666 and \sim 642 cm⁻¹. The B_1 stretch is seen only in the Raman spectra at \sim 604 and 598 cm⁻¹, while the E fundamental appears strongly in the infrared spectra \sim 733 and \sim 685 cm⁻¹ respectively. The corresponding Raman band appears as an extremely weak feature in the spectra of the arsenic compounds and not at all in those of the SbF_5 complexes. None of these vibrations exhibit a significant frequency shift upon acetonitrile isotopic substitution, phase change (solid to solution), or temperature.

We prefer to assign the higher frequency A_1 vibration as the axial stretch because of its greater intensity in the infrared spectra relative to that of the other A_1 mode.

 $\text{AsF}_5 \cdot \text{NCCH}_3$: 400-50 cm^{-1} . The remaining eight bands

associated with the central metal atom lie in this portion of the spectrum: five MX deformations $(1 \text{ A}_1, 1 \text{ B}_1, 1 \text{ B}_2, \text{and})$ 2 E), the N-MX4 wag (E), and the MNC deformation **(E).** In addition, the inactive torsional mode $A₂$ probably occurs here. These assignments were by far the most difficult, even with the help of data from related $MF₅·L$ systems.²²⁻²⁶ As the data for the AsF_5 complex allow a clearer understanding of this region than was possible when the spectra of $SbF₅$. NCCH₃ were initially analyzed,¹⁴ we present some revised assignments for the latter adduct.

For the arsenic complexes, six bands (two of which are polarized) are seen in the Raman spectra, with four corresponding bands observed in the infrared spectra. The two very weak, polarized features appear at 365 and 270 cm^{-1} *in* the Raman solution spectra for the normal isotopic molecules (Figure 1). The band at higher frequency is assigned to the totally symmetric AsF_4 out-of-plane deformation ν_7 and is also seen as a medium strong infrared peak. The other fundamental, which probably corresponds *to* a weak infrared band at 281 cm⁻¹, must then be ν_8 (AsN stretch, A₁). With isotopic substitution ν_7 does not change appreciably in frequency; in contrast, v_8 decreases to 260 cm^{-1} $(AsF₅-D)$ and 267 cm⁻¹ $(AsF₅-¹⁵N)$ in the Raman spectra with similar shifts found also in the infrared spectra.

assignments for the eight A_1 block frequencies. The observed ratio Teller-Redlich product rule²⁷ calculations corroborate the

$$
\prod_{n=1}^{8} \frac{\nu_n(\text{AsF}_5 - D)}{\nu_n(\text{AsF}_5 - H)}
$$

differs by less that 1% from the predicted value (0.507 *VS.* 0.504). With **15N** substitution the discrepancy is somewhat larger $(\sim 4\%)$, the respective values for the observed and the theoretical ratios being 0.975 and 0.936.

The intense band at \sim 384 cm⁻¹ in the infrared spectra, with a weak, depolarized Raman counterpart, must be of E symmetry. Because it is unaffected by isotopic substitution (Figure l), it is unlikely to be linked to symmetry coordinates involving the metal-nitrogen bond. By elimination, this narrows the choice to either the $F'-AsF_4$ wag (E) or the AsF_4 deformation (E) .²⁸⁻³³

 (22) SeF_5Cl : K. O. Christe, C. J. Schack, and E. C. Curtis, *Inovg. Chem.,* **11, 583 (1972).**

(23) TeF,OH: **H.** J. Burger, *2. Anovg. Allg. Chem.,* **360, 91 (1968).**

 (24) SeF_{5}^{-} , TeF_{5} and D. Pilipovich,Inovg. *Chem.,* **11, 1679 (1972).** K. 0. Christe, E. C. Curtis, C. **J.** Schack,

 (25) $IF_5O:$ **2001 (1965).** D. F. Smith and G. M. Begun, *J. Chem. Phys.,* **45,**

 (26) Br F_s , IF_s : (a) G. M. Begun, W. H. Fletcher, and D. F. Smith, *J. Chem. Phys.*, 42, 2236 (1963); (b) H. Selig and H.
Holzman, *Isr. J. Chem.*, 7, 417 (1969).
(27) W. J. Jones in "Infra-Red Spectroscopy and Molecular

Strucrure," M. Davies, Ed., Elsevier, Amsterdam, **1963,** Chapter **IV, pp 134-1 37.**

(28) It is unclear whether $\delta(X'-MX_a$ wag) or $\delta(MX_a)$ deformation) should be of higher energy. Christe and his coworkers assigned the former as being at higher frequency than the latter in SeF_sCl , 22 SF_sO^2 , 29 SF_s^{-24} SeF_s^{-24} and TeF_s^{-24} on the basis of previous assignments for the SF_sCl molecules by Gri give any reason for the stated preference. Adams, on the other hand, prefers the alternative assignment for $InCl_s⁻³²$ and $InCl_s⁻¹$ $(H_2O)^{-33}$ [*i.e.*, $\delta(MX_4) > \delta(X'-MX_4)$]. The choice shown in Table **1** is given simply as a matter of convenience.

W. Sawodny, *Znovg. Chem.,* **12,** *620* **(1973). (29)** K. 0. Christe, C. **J.** Schack, D. Pilipovich, E. C. Curtis, and

(30) J. E. Griffiths, *Spectvochim. Acta, PurtA,* **23, 2145 (1967).**

(31) L. H. Cross, H. L. Roberts, P. Goggin, and L. **A.** Woodward, *Duns. Faraday SOC.,* **56, 945 (1960).**

Figure 1. Raman spectrum of polycrystalline AsF_s.¹⁴NCCH₃ (200-800 cm⁻¹). The broad, asymmetric band underlying the AsF_s.Ndeformations is due to Raman scattering from the Pyrex sample tube.

The remaining weak infrared band at 324 cm^{-1} corresponds to a weak, depolarized feature in the Raman spectra. This, too, must belong to the E symmetry class. Isotopic substitution at the nitrogen produces little change in its frequency; deuteration, on the other hand, causes a decrease of 11 cm⁻¹ in the Raman spectra and \sim 18 cm⁻¹ in the infrared spectra and a corresponding increase in intensity. Since v_8 (AsN stretch, A₁) is some 55 cm⁻¹ lower in frequency, it seems implausible to assign the $324 \cdot cm^{-1}$ peak as ν_{19} (N-AsF₄ wag, E), and it is much too high in energy to be the AsNC deformation. The only possibility that survives is v_{20} (AsF₄ in-plane deformation, E).

A weak, depolarized band in the Raman spectra at 240 $(AsF₅-H), 232 (AsF₅-D), and 237 cm⁻¹ (AsF₅-¹⁵N) must be$ ν_{19} (N-AsF₅ wag, E), even though its infrared counterpart is not observed. It cannot be v_{12} (AsF₄ in-plane deformation, B_2) because v_{12} is the lone coordinate of the B_2 class and the Teller-Redlich product rule ratio for this symmetry block equals 1.000.³⁴ Therefore, the position of this vibration must remain constant during isotopic substitution. Likewise, it cannot be v_{11} (AsF₄ out-of-plane deformation, B₁). The **B1** class product rule ratio is again 1 .000,34 and therefore the fact that the other member of this class, v_{10} (~604 cm⁻¹),

(32) D. M. Adams and R. R. Smardzewski, *J. Chem. SOC. A,* **714 (1971).**

(33) D. M. Adams and D. C. Newton, *J. Chem. SOC., Dalton Dans.,* **681 (1972).**

(34) No translations or rotations, or vibrations involving an isotopically substituted atom, belong to either of the **B** symmetry classes; therefore, all of the exponents in the product rule equation²⁷ are zero and the product ratio becomes identically equal to **1.000.**

remains constant during isotopic substitution requires ν_{11} to stay fixed also.

The only other observed band yet unassigned is a broad, medium-intensity, Raman band at \sim 104 cm⁻¹. Again there is no corresponding infrared peak, but isotopic frequency changes (to \sim 95 [AsF₅-D] and \sim 102 cm⁻¹ [AsF₅-¹⁵N]) rule out its assignment to either of the B mode deformations.³⁴ The alternative is v_{21} (AsNC deformation, E), which would be expected to be of very low energy.

is understandable; this fundamental is either very weak or not observed for other $MF_5 \cdot L$ type complexes.²²⁻²⁶ The absence of the B_2 deformation v_{12} is more troubling. It is quite possible, however, that this band is accidentally degenerate with one of the other observed deformations. That v_1 , (AsF₄ out-of-plane deformation, B₁) is not seen

The deformation region for the antimony pentafluoride adducts begins some 100 cm^{-1} lower $(\sim 290 \text{ cm}^{-1})^{14}$ than that for the arsenic systems. This time only five bands are found in the Raman spectra (two of which are polarized), while there is one, very broad, ill-defined band in the far-infrared spectra. The weak, polarized Raman band at **-290** cm⁻¹ is probably ν_7 (SbF₄ out-of-plane deformation, A₁) while the very weak, polarized feature at \sim 277 cm⁻¹ (SbF₅-H) and at \sim 274 cm⁻¹ (SbF_s-D) may be assigned to the SbN stretch, v_8 (A₁). A very weak, depolarized peak about 261 cm⁻¹ is likely to be ν_{19} , the N-SbF₄ wag (E), since it too moves to smaller wave number values upon deuteration. A strong, broad infrared band is centered at \sim 267 cm⁻¹ but is too poorly resolved even at -196° to aid in the assignments.

The remaining two observed Raman bands are at **183** and **-96** cm-' for the normal isotopic complex. The former has a deuterium isotope shift of about -3 cm⁻¹ while the latter decreases *ca*. 10 cm⁻¹. Neither of these is found in the infrared spectra; nevertheless, comparison of relative peak positions and intensities with those measured for the arsenic spectra leads to their probable assignment as v_{20} (SbF₄ inplane deformation, E) and v_{21} (SbNC deformation, E).

One **E** mode is yet unobserved: the F' -Sb F_4 wag (ν_{18}) . Its absence may best be explained by assuming it to be accidentally degenerate with v_7 (\sim 290 cm⁻¹) and to contribute to the relative peak height of this latter band. Again the two deformations belonging to the B symmetry classes are missing from the observed spectrum. The arguments presented above for the arsenic complexes apply here with equal validity.

SbCl_s.NCCH₃: $425-275$ cm⁻¹. The four metal-chlorine stretches $(2 \text{ A}_1, 1 \text{ B}_1, \text{ and } 1 \text{ E})$, as well as the CCN deformation (ν_{17}, E) , belong in this portion of the spectrum of SbCl₅. NCCH3. Although the molecular symmetry about the antimony approaches C_{4v} , the site group for the crystalline solid is only C_s .¹² Indeed, there is some evidence for site group splitting on the E modes; overall, however, the assignments bear out a C_{4v} local symmetry approximation rather well.

plexes exist in the literature including $SbCl_5 \nCH_3NO_2$,¹⁰ $SbCl_5:DMF,$ ¹¹ SbCl₅ $:DMSO,$ ¹¹ SbCl₅ $H_2O,$ ¹¹ and SbCl₅. NCCI,¹³ as well as $SbCl₅$ NCCH₃.¹³ None of these gives a complete spectrum and of the few assignments attempted, several appear to be in error. Spectral data for a number of antimony pentachloride com-

More helpful, particularly for the deformation region to be discussed shortly, are very detailed vibrational studies for InCl₅⁻,32,35</sup> TlCl₅⁻,³⁶,37^M(NO)Cl₅^{-,38} and M(CO)Cl₅⁻³⁹

Figure 2. Raman spectrum of polycrystalline SbCl, 14 NCCH, (50-**450 cm-I). Several very weak features are shown at 10 times the** normal **ordinate expansion.**

[where $M = Os$, Ru , Ir , or Rh]. Reports concerning $InCl₅$ - $(H_2O)^{-33}$ NbCl₅.NCCH₃,⁴⁰ NbCl₅Br⁻⁴¹ and TaCl₅Br⁻⁴¹ were also consulted.

As with the fluoride complexes, there are two very strong Raman bands, which in this instance are at **344** and **348** cm-' (Figure 2) and logically belong to ν_5 (SbCl' axial stretch, A_1) and v_6 (SbCl₄ equatorial stretch, A₁). The corresponding infrared bands for the solid are slightly displaced to **340** and **350** cm-l. Solution data reveal two polarized bands: one at **340** cm-' is very strong; the other is medium weak and broad and is centered at **361** cm-' .

The very strong infrared fundamental at 370 cm⁻¹ has a weak Raman analog about 371 cm⁻¹ and must be of E symmetry. Deuteration results in small $(\sim 2 \text{ cm}^{-1})$ positive frequency shifts. Clearly, then, it is not the CCN deformation but must be v_{16} (SbCl₄ equatorial stretch, E). Site group splitting may be responsible for a somewhat weaker Raman feature about 367 cm^{-1} . The CCN deformation, v_{17} (E), appears at **399** cm-' for the normal molecule and shifts to **368** cm-I upon deuteration. Again there is evidence of site group splitting in the solid-phase spectra of the normal isotopic molecule: two bands are seen in both the Raman and the infrared spectra at \sim 395 and 401.5 cm⁻¹.

(41) G. A. Ozin, G. W. **A. Fowles, D. J. Tidmarsh, and R. A. Walton,** *J. Chem. SOC. A,* **642 (1969).**

⁽³⁵⁾ S. R. Leone, B. Swanson, and D. F. Shriver, *Inorg. Chem.,* **9, 2189 (1970).**

⁽³⁶⁾ D. F. Shriver and I. Wharf, *Inorg. Chem.,* **8, 2167 (1969). (37) G. Joy, A. Gaughan, I. Wharf, D. F. Shriver, and J. P. Dougherty, submitted for publication.**

⁽³⁸⁾ M. J. Cleare, H. P. **Fritz, and W. P. Griffith,** *Spectrochim.* **(39) M. J. Cleare, H. P. Fritz, and W. P. Griffith,** *Spectrochim. Acta, PartA,* **28, 2013 (1972).**

⁽⁴⁰⁾ G. A. Ozin and R. A. Walton, *J. Chem. Soc. A*, 2236

^{(1970).}

Figure 3. Raman spectra of a solution of $SbCl₅$.¹⁴NCCH₃ in liquid $SO₂$ (100-500 cm⁻¹). For A, the electric vector of the incident beam was perpendicular to the direction in which the scattered light was observed; for B, the electric vector of the incident beam was parallel to the direction in which the scattered light was observed.

Two moderately weak features at 295 and 300 cm^{-1} in the Raman spectrum of the solid (Figure *2)* remain to be discussed. Solution spectra (Figure 3) reveal only a single. depolarized band of comparable intensity at 299 cm^{-1} . Because of the absence of any infrared bands between 330 and 240 cm^{-1} , these must belong to one of the B classes. In particular, one must be the B_1 SbCl₄ equatorial stretch (v_{10}) . The origin of the weaker vibration in the solid phase at 301 cm^{-1} may perhaps be traced to the $v_{18} + v_{20}$ combination⁴² (the Cl' -Sb Cl_4 wag and the Sb Cl_4 in-plane deformation, both class E). Its unusual intensity is the result of Fermi resonance coupling with v_{10} . After the usual corrections,⁴³ the values for the fundamental and the combination band are 297 and 299 cm^{-1} , respectively. Why the second band is missing from the solution spectra remains uncertain. Perhaps it lies close enough to v_{10} so as not to be resolved as a separate peak. That v_{20} decreases about 4 cm⁻¹ in frequency upon dissolution lends credence to such an assumption.

pear in the Raman spectra of the solid at 211 and 222 cm⁻ $(SbCl₅-H)$. Deuteration causes a drop to lower wave number (205 and 215 cm^{-1} , respectively). The matching roomtemperature infrared vibrations manifest themselves at somewhat higher frequency (\sim 215 and \sim 223 cm⁻¹), the former being moderately intense while the latter is weaker and less **SbCl₅·NCCH₃:** $275-200$ cm⁻¹. Two very weak peaks ap-

well resolved. Although no depolarization ratios are available (these bands being too weak to be seen in solution spectra), on the basis of the isotopic shifts, it is reasonable to attribute them respectively to v_{19} (N-SbCl₄ wag, E) and v_8 (SbN stretch, A_1). This choice gives an A_1 block Teller-Redlich product rule ratio of 0.509, compared to a theoretical value of 0.503, for an error of just over 1%. Also, as expected for smaller, less polarizable elements such as nitrogen, the relative Raman intensities for these two bands are of the same order of magnitude as those of the acetonitrile modes and are very much weaker than most of the antimony-chlorine vibratjons.

One striking feature of these two fundamentals is the conspicuous temperature dependence. The E mode drops about 3 cm^{-1} per 100° K dip in temperature, and the symmetric 5 cm^{-1} in the same interval.

-10 cm⁻¹. The five SbCl deformations $(1 \text{ A}_1, 1 \text{ B}_1, 1 \text{ B}_2, \text{ and } 2 \text{ E})$ and the SbNC deformation (E) should all be found below 200 cm⁻¹. Of the three bands actually observed in this region of the solution spectra none were polarized (Figure 3). Two other vibrations were seen only for the solid. The weak, depolarized Raman band at 170 cm^{-1} is paired with a medium-strong infrared fundamental at 166 cm⁻¹ and must be one of the two E type SbCl deformations (v_{18} or v_{20}). A nearby shoulder (\sim 175 cm⁻¹) in both techniques is of either E or A_1 symmetry. (The Raman feature was resolved only at temperatures below -10° in the spectrum of the solid.) Because of its relative intensity and its proximity to the previously assigned E mode, we felt it likely to be ν_7 (SbCl_a out-of-plane deformation, A₁).

Of the three remaining bands, only the one at \sim 94 cm⁻¹ in the solid-phase Raman (Figure *2)* could be given a reasonably sure assignment. Its disposition as the SbNC deformation (ν_{21}, E) agrees quite well with previous assignments for the equivalent coordinates in $\text{As}F_5\text{-NCCH}_3$ and $\text{Sb}F_5\text{-NCCH}_3$. That a decrease of ~8 cm⁻¹ was observed for the deuterated analog lends further support to this interpretation.

Three coordinates are left for which to account, but only two bands have not yet been assigned. These two features at 187 and 135 cm^{-1} are found only in the Raman spectra and are depolarized. Since the two **Is** class deformations are assigned to higher frequencies than the A_1 or E modes for the thoroughly studied $InCl₅^{-32,35}$ ion (C_{4v}) , one can reasonably hypothesize that the 187 -cm⁻¹ band is v_{12} (SbCl₄ inplane deformation, B_2) while the 135-cm⁻¹ vibration is the remaining E mode (v_{20}) . This latter choice is in accord with the earlier assumption that the Raman shift at 300 cm^{-1} is a combination band of the fundamentals at 170 and 135 cm^{-1} in Fermi resonance with v_{10} (B₁) at 295 cm⁻¹. As argued previously, v_{11} (SbCl₄ out-of-plane deformation, B_1) is probably too weak to be discerned.

Seven other features, all of which shift with temperature, appear in the solid-phase Raman spectra between 10 and 50 cm^{-1} . They are assigned as lattice vibrations.

Discussion

The results of this vibrational spectroscopic investigation of the acetonitrile adducts of arsenic pentafluoride and antimony pentachloride, together with those of the previously reported antimony pentafluoride complex,¹⁴ provide the most comprehensive set of data and assignments now available for any $MX₅·L$ type complex of a group Va metal pentahalide. As expected, the data are in accord with simple molecular complexes having approximately C_{4v} symmetry at the central metal atom. All eight predicted A_1 class fundamentals were located as polarized bands in the Raman solution spectra of

⁽⁴²⁾ For C_{4n} symmetry, the combination of these two modes results in $A_1 + A_2 + B_1 + B_2$.

(43) J. Overend, ref 27, Chapter X, pp 350-353.

the fluoride systems. Although the ν_7 and ν_8 (A₁) bands were imperceptible in the solution spectra of $\widehat{\text{SbCl}_5} \cdot \text{NCCH}_3$, they were successfully assigned to weak features in the solidphase spectra. Based on these data, a vibrational analysis yielded the A₁ block symmetry force constants for each of these systems of complexes (Table VI1 and Appendix).

The most significant changes in the acetonitrile portion of these molecules after complex formation are associated with ν_2 (CN stretch, A₁), ν_4 (CC stretch, A₁), and ν_{17} (CCN deformation, E). All of these move to higher frequencies, their values generally following the trend $\nu(\text{AsF}_5\cdot L) > \nu(\text{SbF}_5\cdot L)$ $\nu(SbCl₅·L) > \nu(L)$ where L = acetonitrile. The k_{CN} (=F₂₂) force constants conform to the same pattern (Table VII), free acetonitrile trailing the others with a value of 17.4 ± 0.8 $m\text{dyn}/\text{A}^{44}$ Because results on the acetonitrile portion are ancillary to the central theme of this project, readers desiring further discussion of these matters should refer to Swanson and Shriver's comments on the BX₃.NCCH₃ molecules $[X = F, C1,$ or Br $]$ ^{16,45}

Of particular importance are the observed trends in the frequencies and force constants of the metal-nitrogen stretch.
The general order for both is $SbF_5 \cdot L \sim AsF_5 \cdot L > SbCl_5 \cdot L$ $(L =$ acetonitrile). The calculated force constants for the fluoride species are equal (\sim) 9 mdyn/Å) within statistical error, even though the antimony adduct exhibits a slightly higher frequency. By contrast, the value for the antimony pentachloride complex is significantly smaller $(k_{\text{SbN}} = 1.1$ mdyn/A). The trend toward a higher N-Sb force constant for SbF_s than for SbC_{1s} adducts is exactly opposite that of the acetonitrile boron trihalides where $k_{\text{B-N}}$ is greater for the $BC1₃$ than the $BF₃$ adduct.¹⁶

Upon adduct formation, BF_3 is distorted from a planar to a pyramidal geometry, and as this distortion is increased, MO calculations show that the acceptor orbital of $BF₃$ decreases smoothly in energy.¹⁶ This energy decrease, which corresponds to greater acceptor strength, occurs from increased s character in the vacant orbital and from decreased π -antibonding character as the B-F π bonding is reduced by the angular distortion. 46 Even with tetrahedral bond angles around boron, the π donation from F to B may interfere with *v* donation from the lone pair of an added Lewis base.⁴⁷ The $p\pi$ - $p\pi$ boron-halogen interaction is stronger for the two second-period elements boron and fluorine than for boron and chlorine. Therefore, resistance to distortion and competing π bonding will be greater for BF₃ than BCl₃, making BF₃ the poorer electron acceptor.

In contrast with boron acceptors, $p\pi$ - $p\pi$ bonding to the halide should be much less important with fourth- and fifthperiod acceptors such as As and Sb. Also, involvement of d orbitals in the bonds of these heavy elements will tend to reduce the influence of halogen-metal π bonding even further, because p π -d π bonds, which involve the d_{xz} , d_{yz} , and d_{xy} orbitals, are orthogonal to the remaining d orbitals, which are involved in σ bonding. It is therefore reasonable that the strengths of donor-acceptor bonds formed by SbX_5 will be dominated by the electronegativity of the halides and not by the effects of π bonding which appear to determine relative acceptor strengths of the boron halides.

tetrahedral value.

Soc., 90, 5706 (1968). (47) D. *G.* **Brown, R. S. Drago, and T. F. Bolles, J.** *Amer. Chem.*

Interestingly, the SbN and AsN stretching force constants are equal within experimental error for the pentafluorideacetonitrile adducts, indicating that the donor-acceptor bond energy is nearly the same for both. Even on the basis of reported chemical properties, no distinct difference between the relative strengths of the two Lewis acids may be discerned.

The other key aspect of this study of these group Va acetonitrile adducts lay in the detection of recognizable, systematic patterns characteristic of such $MX₅·L$ complexes. As with other such species of C_{4v} symmetry^{10,11,13,22–26,29–33,35–41} the metal-halogen stretch region appears to be the most symptomatic. In general, one finds two strong, polarized Raman bands as well as a weak, depolarized peak some 40- 65 cm-I lower in frequency. The infrared spectra in the same region have three medium to very strong bands. In the infrared spectra the highest frequency feature is very strong and is found $15-25$ cm⁻¹ above its nearest neighbors. (Upon occasion a weak Raman feature is observed at this same frequency.) The two lower energy infrared bands are usually of strong to medium intensity and closely correspond to the polarized Raman vibrations.

Acknowledgment. We are grateful to the Environmental Protection Agency for a fellowship (U910143) to D. M. B. and to the National Science Foundation for support through Grant GP-28878.

Appendix. Calculation of the A₁ Block Force Constants for AsF₅.NCCH₃, SbF₅.NCCH₃, and SbCl₅.NCCH₃

The A_1 block symmetry force constants for the acetoni-

Table IV. Molecular Parameters and Internal Coordinates for $MX, YCCH, (M = As or Sb; X = F or Cl)$

of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 224. *d* Average values from $CIF_3 \tcdot AsF_5$: H. Lynton **and J. Passmore,** *Can. J. Chem.,* **49, 2539 (1971). e Average values** from SbF_s . SO_2 ⁴⁹ and $[XeF_3^+]$ [$Sb_2F_{11}^-$] for terminal $r(Sb-F)$: **D. E. McKee, A. Zalkin, and N. Bartlett,** *Inorg. Chem.***, 12**, 1713 (1973). *f* Idealized to highest possible symmetry. $\mathbf{F} \mathbf{m} = -\sqrt{3}$. $\cos \beta / \cos (\alpha/2); n = 3(m^2 + 1).$ When $\alpha = \beta = 109.47^{\circ}$ (*i.e.*, the **tetrahedral angle),** $m = 1$ **and** $n = 6$ **.**

⁽⁴⁴⁾ B. I. Swanson, Ph.D. Dissertation, Northwestern University, 1970, Appendix A.

⁽⁴⁵⁾ B. Swanson and D. F. Shriver, *Inorg. Chem.***, 9, 1406 (1970). (46)** The F-B-F angle in a complex is not necessarily 109[°] be**cause the degree of BF, distortion is expected to vary from one donor to the next, with strong donors leading to F-B-F nearer the**

Table V. Observed and Calculated A, Block Frequencies for Three Isotopic Varieties of AsF _s NCCH ₃ (cm ⁻¹)									
	AsF ϵ ¹⁴ NCCH ₂			AsF \cdot ¹⁴ NCCD ₂			AsF.15NCCH.		
Assignment	Obsd	Calcd	Δ^a	Obsd	Calcd	Δ	Obsd	Calcd	
v_i (CH ₃ str)	2947.8	2946.2	1.6	2114.9	2118.9	-4.0	2947.5	2946.2	1.3
ν_{2} (CN str)	2332.3 ^b	2335.7	-3.4	2338.6	2338.7	-0.1	2308.0 ^b	2304.3	3.7
ν_{2} (CH ₂ def)	1363.8	1364.9	-1.1	1097.0	1094.2	2.8	1363.9	1364.9	-1.0
$v4$ (CC str)	962.1	964.2	-2.1	878.5	875.0	3.5	952.6	953.6	-1.0
$\nu_{\rm s}$ (AsF' str)	715.0	715.5	-0.5	715.0	714.7	0.3	715.8	715.5	0.3
ν_{6} (AsF ₄ str)	673.3	673.3	-0.0	673.0	673.3	-0.3	673.7	673.3	0.4
ν_7 (AsF ₄ def)	364.6	364.8	-0.2	363.1	362.0	1.1	363.5	364.4	-0.9
$\nu_{\rm s}$ (AsN str)	270.3	269.0	1.3	259.7	261.1	-1.4	267.2	267.3	-0.1

^a The average deviation is 1.4 cm⁻¹ for the three molecules $[\Delta = \nu(\text{obsd}) - \nu(\text{calcd})]$. ^b The values given for ν_2 of AsF_s⁻¹⁴NCCH₃ and AsF_s⁻¹⁵NCCH₃ and AsF_s⁻¹⁵NCCH₃ and AsF_s⁻¹⁵NCCH₃ and AsF_s

Table VI. Observed and Calculated A₁ Block Frequencies for Two Isotopic Varieties of SbF_s .NCCH₃ and SbCl_s .NCCH₃ (cm⁻¹)

	$SbF5$. ¹⁴ NCCH ₃		$SbFe14 NCCDa$		$SbCl5$ ¹⁴ NCCH ₃			$SbCls$ ¹⁴ NCCD ₃				
	Obsd	Calcd	Δ^a	Obsd	Calcd	Δ	Obsd	Calcd	Δ^c	Obsd	Calcd	Δ
ν , (CH ₃ str)	2948.0	2944.7	3.3	2113.0	2117.7	-4.7	2930.1	2929.2	0.9	2104.7	2106.3	-1.6
v_{2} (CN str)	2329.0 ^b	2330.2	-1.2	2335.0	2333.6	1.4	2304.5 ^b	2307.1	-2.6	2312.9	2311.0	1.9
ν_{2} (CH ₃ def)	1364.0	1365.3	-1.3	1099.0	1097.6	1.4	1353.3	1355.6	-2.3	1093.6	1093.5	0.1
v_{4} (CC str)	965.0	966.8	-1.8	877.0	874.1	2.9	944.5	947.4	-2.9	856.3	850.2	6.1
v_{s} (SbX' str)	663.0	664.1	-1.1	665.0	664.0	1.0	348.5	348.4	0.1	347.9	348.0	-0.1
v_{ϵ} (SbX ₄ str)	641.0	641.0	0.0	641.0	641.0	0.0	344.0	344.3	-0.3	344.7	344.3	0.4
ν_{τ} (SbX _a def)	290.0	292.6	-2.6	289.0	288.1	0.9	173.5	173.8	-0.3	173.0	172.6	0.4
v_{s} (SbN str)	277.0	278.3	-1.3	274.0	271.8	2.2	221.6	222.1	-0.5	215.7	215.9	-0.2

¹⁴ NCCH₃ and SbCl_s¹⁴ NCCH₃ have been corrected for Fermi resonance with $v_3 + v_4$. ^c The average deviation is 1.3 cm⁻¹ for SbCl_s¹⁴ NCCH₃ and $SbCl₅ ·¹⁴ NCCD₃$. *a* The average deviation is 1.7 cm⁻¹ for SbF₅.¹⁴NCCH₃ and SbF₅^{,14}NCCD₃ [$\Delta = v$ (obsd) – *v*(calcd)]. *b* The values given for *v₂* of SbF₅

trile complexes of AsF₅, SbF₅, and SbCl₅ were calculated using the iterative least-squares program FPERT and the associated program GMAT (both locally modified).⁴⁸ The individual eigenvalues were weighted as $w_i = 1/\lambda_i$.

summarized in Table 1V and were estimated from several sources. Since the angles $CISbC1 = 89^\circ$, $CISbC1' = 95^\circ$, and $NSbCl = 85^{\circ}$ for $SbCl_5$ -NCCH₃¹² and $FSbF = 87.5^{\circ}$, $FSbF' =$ 94.4°, and NSbF = 85.6° for SbF₅·SO₂⁴⁹ are all within 5° of being perpendicular, the 12 angles about the metal were taken to be *90"* for all three adduct systems. In addition, the MNC and CCN angles were set equal to 180" while all the CCH and HCH angles were idealized as being tetrahedral. olecular parameters used to calculate the *G* matrix are

Tables V and **'JI** summarize the observed frequencies which were used for these force constant calculations. Raman data for the solids were the choice throughout except in the four instances. Infrared values were used for v_4 for the AsF₅ species and for v_1 , v_2 , and v_4 for the SbF₅ adducts.

As with most large molecules, insufficient data preclude an unconstrained general valence force field (GVFF) analysis. Therefore, for the first approximation just two interaction constants $(F_{28}$ and F_{34}) and the eight primary constants were given nonzero values, and only the four primary constants involving the MX_s-N- vibrations were refined. The initial values for the acetonitrile constants, including F_{28} and F_{34} , were transferred from those for BF_3 ·NCCH₃^{,45} those for AsF₅-N- were estimated from SeF₅Cl,¹¹ and those for SbF₅-N- were scaled from the previous values for the AsF_5-N constants by assuming that $k(\text{TeF}_5^-)/k(\text{SeF}_5^-)$ is proportional to $k(SbF_5 \cdot NCCH_3)/k(AsF_5 \cdot NCCH_3).^{24}$ Estimated constants

for SbCl₅-N- were obtained from SbCl₆⁻⁵⁰ using a transference scheme analogous to that proposed by Ozin for relating $k(NbCl_5Br^-)$ to $k(NbCl_6^-)$.⁴¹

refine simultaneously with all eight primary constants to achieve the values summarized in Table VI1. An attempt also to include F_{28} in the refinement of the AsF₅·NCCH₃ data failed. Earlier calculations in which F_{78} was the only unconstrained interaction constant gave a reasonable fit for the observed and calculated frequency parameters but resulted in an unacceptable potential energy distribution (PED) for v_7 and v_8 of the AsF₅ NCCH₃ complexes. The predominant contributor in these cases for these frequencies was S_8 and S_7 , respectively. The addition of F_{34} brought an immediate change; the PED'S now showed the predominant contributor in each case (except for the deuterated molecule, SbF_5 ·NCCH₃) to be the symmetry coordinate previously assigned to that frequency. In the final refinement, both F_{78} and F_{34} were allowed to

Large uncertainties in the exact frequency value for v_8 of $SbF₅$. NCCH₃, which appears in the Raman spectrum as an unresolved shoulder, may help account for the discrepancy in the PED for v_7 and v_8 in this particular case.⁵¹ Another contributing factor may be that ν_7 and ν_8 lie very close in energy to one another and are heavily mixed.

A variety of numerical experiments were performed to test the significance of the similar force constants for $k_{A\text{sN}}$ and k_{SDN} . For both molecules it was found that a small deterioration in overall fit and in the fitted isotopic shifts was obtained by fixing F_{88} at a variety of values above and below 1.88 mdyn/ \AA . Therefore, within the calculated statistical uncertainty of *ca.* ±0.2 mdyn/Å, the As-N and Sb-N force constants are indistinguishable. The final fit between the observed and calculated frequency parameters is pre-

^{(48) (}a) R. G. Snyder and J. H. Schactschneider, Spectrochim. Acta, 19, 85 (1963). (b) Programs GMAT and FPERT are described more fully by J. H. Schactschneider, "Vibrational Analyses of Polyatomic Molecules," Parts V and VI, Technical Reports 231-64 and *57-65,* Shell Development Co., Emeryville, Calif., 1964 and 1965. **(b)** Programs **GMAT** and FPERT are de-

^{(49) (}a) J. W. Moore, H. W. Baird, and H. B. Miller, *J. Amer. Chem. Soc.*, 90, 1358 (1968); (b) J. W. Moore, H. W. Baird, and **H.** B. Miller, unpublished X-ray data.

⁽SO) P. Labonville, **J.** R. Ferraro, M. C. Wall, S. M. C., and L. G. Basile, *Coord. Chem. Rev., 7, 257* (1972). S. M. C., and
L. G. Basile, *Coord. Chem. Rev., 7*, 257 (1972).
(51) This same kind of phenomenon was observed for the

analogous symmetry coordinates (the BN stretch and the BF_3
deformation) for BF_3 NCCH₃.¹⁶

Table **VII.** A, Block Symmetry Force Constants

	AsF, NCCH,	SbF, NCCH,	SbCl, NCCH,	
F_{11} a	4.994(5) b	4.99(1)	4.936(8)	
F_{22}	18.38(3)	18.26(6)	18.00(4)	
F_{33}	0.584(3)	0.583(6)	0.570(2)	
F_{44}	5.27(8)	5.32(5)	5.30(3)	
F_{ss}	4.34(2)	4.20(4)	1.78(2)	
$F_{\,66}$	5.07(2)	4,60(4)	2.48(3)	
F_{77}	1.00(12)	1.08(4)	1.08(3)	
F_{ss}	1.87(25)	1.88(8)	1.09(2)	
F_{28}	$-0.25c$	$-0.25c$	$-0.25c$	
F_{34}	$-0.41(2)$	$-0.41(1)$	$-0.38c$	
${F}_{78}$	0.10(6)	0.34(2)	0.17(22)	

 a The subscripts identify F_{kl} with the corresponding symmetry coordinates *k* and *l* defined in Table IV. Force constants F_{33} and F_{77} are in units of mdyn A/r adian² while F_{34} and F_{78} are in units of mdyn/radian. All other force constants are in units of mdyn/A. *b* Least-squares standard deviations, given in parentheses, represent the deviation in the last decimal place(s) of a given force constant. **c** These force constants were constrained during refinement. The other **25** unlisted force constants were constrained to zero.

sented in Tables V and VI. The **PED'S** presented in Table

Table VIII. Potential Energy Distribution^a

	AsF, NCCH,	SbCl, NCCH,	
ν,	$100\% V_{11}$	99% $V,$	
$\nu,$	$87\% V_{22} + 10\% V_{44}$	87\% V_{22} + 11\% V_{44}	
ν,	$105\% V_{33} + 8\%$	$104\% V_{33} +$	
	V_{aa} – 13% V_{3a}	$8\% V_{aa} - 13\% V_{3a}$	
v_{4}	$7\% V_{\nu}$, + 82\%	$8\% V_{,2} + 83\% V_{,4}$	
	V_{aa} + 9% V_{ss}		
$v_{\rm s}$	93% V_{ss}	$85\% V_{ss} + 9\% V_{ss} +$	
		$8\%V_{ss}$	
ν_{κ}	100% V_{66}	100% V_{ss}	
ν_{7}	$7\% V_{ss} + 64\% V_{22} +$	$11\% V_{ss} + 7\% V_{\eta} +$	
	32% V_{ss} – 7% V_{28}	85% $V_{\rm ss}$ – 8% $V_{\rm 28}$	
$\nu_{\rm a}$	$32\% V_{22} + 56\% V_{ss} +$	$86\% V_{22} + 6\% V_{24}$	
	$6\% V_{28}$		

a Contributions less than **6%** have been omitted.

VIII for $\text{AsF}_5\text{-NCCH}_3$ hold approximately for $\text{SbF}_5\text{-NCCH}_3$, while those for $SbCl₅$ NCCH₃ are significantly different.

Registry **No.** AsF,*NCCH,, **17632-27-8;** SbF,*NCCH,, **19106- 78-6;** SbCl,*NCCH,, **19106-78-6.**

> Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho **83843**

Amide and Fluoroxy Derivatives of NPerfluoroacylhexafluoroisopropylidenimines

KEITH E. PETERMAN and **JEAN'NE** M. SHREEVE*

Received April 16, I9 74

 $\text{LiN} = \text{C}(\text{CF}_3)$, readily undergoes metathetical reactions with perfluoroacyl halides to give perfluoroacylimines. The new acylimines, $R_fC(O)N=C(CF_3)$, $(R_f = CF_3, C_2F_5)$, are susceptible to polar addition of XY (XY = HF, HCl, ClF) across the C=N bond to yield the corresponding secondary and tertiary amides, $R_fC(O)NXCY(CF_3)$. Direct fluorination of CF₃-C(O)N=C(CF₃)₂ under catalytic conditions produces a fluoroamide, CF₃C(O)NFCF(CF₃)₂, from saturation of the C=N function and a fluoroxy compound $CF_3CF(OF)NFCF(CF_3)_2$ from further addition across the C=O bond.

The acid-catalyzed reaction of aldehydes or ketones with amines has been the most commonly used preparation as a direct one-step route to imines.

OH H

 $R_2CO + H_2NR' \rightleftharpoons R_2C-NR' \rightleftharpoons R_2C=NR'$

Middleton and Krespan' employed this facile one-step procedure in the synthesis of hexafluoroisopropylidenimine, $(CF_3)_2C=NH²$ and the electrophilic nature of the C=N¹⁻¹¹ link has been thoroughly elucidated. The electron-withdrawing substituents (CF_3) on the imine carbon enhance

(1) W. **J.** Middleton and C. G. Krespan, *J. Org. Chem.,* 30, 1398 $(1965).$

(2) Y. **V.** Zeifrnan, N. P. Garnbaryan, and **I.** L. Knunyants, *Dokl. Akad. NnukSSSR, Ser. Khim.,* 153, 1334 (1963).

(3) **Y.** V. Zeifman, N. P. Gambaryan, and **I.** L. Knunyants, *Bull. Acad. Sci. USSR, Div. Chem. Sci.,* 1431 (1965).

(4) C. G. Krespan and W. **J.** Middleton, *Fluorine Chem. Rev.,* **1,** 145 (1967).

- (5) **J.** K. Ruff,J. *Org. Chem.,* 32, 1675 (1967).
- (6) D. M. Gale and C. G. Krespan,J. *Org. Chem.,* 33, 1002 (1968). (7) 0. Glemser and S. P. von Halasz, *Chem. Ber.,* 102, 3333
- (1969).
- *(8)* K. Niedenzu, K. R. Blick, and C. D. Miller, *Inorg. Chem., 9,* 975 (1970).
- (9) K. Niedenzu, C. D. Miller, and **F.** C. Nahm, *Tetrahedron Lett.,* 28, 2441 (1970).

(10) *S.* P. von Halasz and 0. Glemser, *Chem. Ber.,* 103, 553 (10) S. P. von Halasz and O. Glemser, Chem. Ber., 103, 553
(1970).

(1 1) R. **F.** Swindell, L. M. Zaborowski, and **J.** M. Shreeve, *Znorg. Chem.,* 10, 1635 (1971).

the electrophilicity of the C=N bond making it very susceptible to nucleophilic attack. Reactive carbon-nitrogen multiple bonds, however, are not limited to imines as is demonstrated by nucleophilic additions to polar isocyanates $R-C^{\delta^+}=N^{\delta^-}$.^{14,15} Though other polar carbon-nitrogen multiple bonds are electrophilic also, the imine usually is much more susceptible to addition. Generalized addition to carbon-nitrogen multiple-bond linkages has been illustrated by the reaction of chlorine monofluoride when it reacted as a chlorofluorinating agent.^{11,14,16,17} Although studies involving nucleophilic or polar addition have been prevalent in recent years, it is noteworthy that a number of papers have appeared dealing with the direct fluorination of carbon-nitrogen multiple bonds.^{5,18-20} $(R-N=C=O \leftrightarrow R-N^{\delta-}-C^{\delta-}=O^{-12,13}$ and nitriles $(R-C=N \leftrightarrow$

(12) S. Ozaki, *Chem. Rev.,* 72,457 (1972).

- (13) G. H. Sprenger, K. **J.** Wright, and **J.** M. Shreeve, *Inorg. Chem.,* 12, 2890 (1973).
	- (14) **J. B. Hynes and T. E. Austin,** *Inorg. Chem.***, 5, 488 (1966).**
	- (15) P. H. Ogden, *J. Org. Chem.,* 33,2518 (1968).
- (1 6) D. D. Moldavskii and V. G. Temchenko, *J. Gen. Chem. USSR,* 39, 1362 (1969).
- (17) D. **E.** Young, L. R. Anderson, and W. B. **Fox,** *Chem. Com mun., 7,* 395 (1970).
- (18) B. C. Bishop, **J.** B. Hynes, and L. **A.** Bigelow, *J. Amer. Chem.* **SOC.,** 85, 1606 (1963).
- (19) B. **C.** Bishop, **J.** B. Hynes, and L. A. Bigelow, *J. Amer. Chem. SOC.,* 86, 1827 (1964).

(20) **J.** B. Hynes, B. C. Bishop, P. Bandyopadhyay, and L. A. Bigelow, *J. Amer. Chem. Soc.*, 85, 83 (1963).

AIC40246 R